Use a Prophet model to predict the price of a stock over time. Use
daily_prophet_model
for daily predictions, and monthly_prophet_model
for
monthly predictions.
Format
A tibble with 491 / 470 rows and 3 variables.
- ticker
The ticker that the model was fitted on
- data
The training data that the model was fitted on
- fit
The fitted Prophet model object
An object of class tbl_df
(inherits from tbl
, data.frame
) with 482 rows and 3 columns.
Examples
daily_prophet_model
#> # A tibble: 502 × 3
#> ticker data fit
#> <fct> <list> <list>
#> 1 A <tibble [126 × 2]> <prophet [32]>
#> 2 AAL <tibble [126 × 2]> <prophet [32]>
#> 3 AAP <tibble [126 × 2]> <prophet [32]>
#> 4 AAPL <tibble [126 × 2]> <prophet [32]>
#> 5 ABBV <tibble [126 × 2]> <prophet [32]>
#> 6 ABC <tibble [126 × 2]> <prophet [32]>
#> 7 ABMD <tibble [126 × 2]> <prophet [32]>
#> 8 ABT <tibble [126 × 2]> <prophet [32]>
#> 9 ACGL <tibble [126 × 2]> <prophet [32]>
#> 10 ACN <tibble [126 × 2]> <prophet [32]>
#> # … with 492 more rows
monthly_prophet_model
#> # A tibble: 482 × 3
#> ticker data fit
#> <fct> <list> <list>
#> 1 A <tibble [121 × 2]> <prophet [32]>
#> 2 AAL <tibble [121 × 2]> <prophet [32]>
#> 3 AAP <tibble [121 × 2]> <prophet [32]>
#> 4 AAPL <tibble [121 × 2]> <prophet [32]>
#> 5 ABC <tibble [121 × 2]> <prophet [32]>
#> 6 ABMD <tibble [121 × 2]> <prophet [32]>
#> 7 ABT <tibble [121 × 2]> <prophet [32]>
#> 8 ACGL <tibble [121 × 2]> <prophet [32]>
#> 9 ACN <tibble [121 × 2]> <prophet [32]>
#> 10 ADBE <tibble [121 × 2]> <prophet [32]>
#> # … with 472 more rows