Nested model predictions across many sub-models
Source:R/multi_predict.R
multi_predict.nested_model_fit.Rd
parsnip::multi_predict()
method for nested models. Allows predictions
to be made on sub-models in a model object.
Usage
# S3 method for nested_model_fit
multi_predict(object, new_data, ...)
Arguments
- object
A
nested_model_fit
object produced byfit.nested_model()
.- new_data
A data frame - can be nested or non-nested.
- ...
Passed onto
parsnip::multi_predict()
Examples
library(dplyr)
library(tidyr)
library(parsnip)
library(glmnet)
data <- filter(example_nested_data, id %in% 16:20)
nested_data <- nest(data, data = -id2)
model <- linear_reg(penalty = 1) %>%
set_engine("glmnet") %>%
nested()
fitted <- fit(model, z ~ x + y + a + b, nested_data)
multi_predict(fitted, example_nested_data,
penalty = c(0.1, 0.2, 0.3)
)
#> Warning: Some predictions failed.
#> # A tibble: 1,000 × 1
#> .pred
#> <list>
#> 1 <tibble [3 × 2]>
#> 2 <tibble [3 × 2]>
#> 3 <tibble [3 × 2]>
#> 4 <tibble [3 × 2]>
#> 5 <tibble [3 × 2]>
#> 6 <tibble [3 × 2]>
#> 7 <tibble [3 × 2]>
#> 8 <tibble [3 × 2]>
#> 9 <tibble [3 × 2]>
#> 10 <tibble [3 × 2]>
#> # ℹ 990 more rows